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In the present investigation we consider hydromagnetic Stokes flow past a rotating 
sphere. The magnetic field is produced by a magnetic pole placed at the centre of the 
sphere. The problem is analysed by a combination of perturbation and numerical 
methods. It is seen that the flow reversal (due to rotation) at the rear portion of the 
sphere is enhanced as the strength of the magnetic field increases. In addition, we 
obtain the simultaneous effects of rotittion and a magnetic field on the streamlines. 

1. Introduction 
The study of slow motion of a viscous incompressible fluid past a sphere has been a 

topic of interest for many years. Under the assumption that the Reynolds number 
R < 1 ,  Stokes (1845) obtained an exact solution for the flow past a sphere due to a 
uniform stream at infinity. On the other hand Rubinow & Keller (1961) discussed the 
flow due to a spinning sphere which is moving through a quiescent incompressible 
viscous fluid, while Childress (1964) investigated the flow generated by motion of a 
sphere through a rotating fluid. Subsequently, Ranger (1971) examined slow flow 
past a rotating sphere with a uniform stream at infinity. On the basis of a linear 
superposition of the primary Stokes flow past a non-rotating sphere and a secondary 
flow induced by the spinning sphere, he showed that there is a region of reversed flow 
attached to the rear portion of the sphere. In a recent paper, Singh (1975) examined 
the flow past a sphere in the case when the sphere and the fluid a t  infinity are both 
rotating. 

Though generalization of this class of problems to hydromagnetics attracted the 
attention of researchers some time ago, the literature indicates that only a few 
problems have been discussed so far. Most investigations in this area are concerned 
with inviscid hydromagnetic flow over a sphere. Nevertheless, Barthel & Lykoudis 
(1960) ha!ve examined the low Reynolds number flow past a sphere in the presence 
of a magnetic field produced by a dipole situated a t  the centre of the sphere. Con- 
fining their analysis to the case of small Hartmann number M [ = Hoa(pe/pvy)*],  they 
obtained a solution which represents small perturbations to classical Stokes flow. 
Later Riley (1961) devoted his attention to the hydromagnetic Stokes flow past a 
sphere when the magnetic field arises owing to a magnetic pole placed a t  the centre 
of the sphere. Assuming that not only the Reynolds number R but also the magnetic 
Reynolds number RM was small, he obtained a series solution by the method of 
Frobenius. In view of the complexity of the analysis, he derived asymptotic solutions 
for large and small values of M and obtained a numerical solution for intermediate 
values of M .  His solution reveals that the drag on the sphere increases with the Hart- 
mann number and that the st,reamlines of the flow are significantly affected as the 
component of velocity normal to the magnetic lines of force is destroyed. 
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In  the present paper we study the effect of a radial magnetic field on the flow past 
a slowly rotating sphere. Our aim is not only to obtain the simultaneous effects of 
rotation and a magnetic field, but also to find out what will happen to the flow reversal 
at the rear portion of the sphere, a, result seen in the hydrodynamic case and discussed 
by Ranger (1971). 

2. Formulation of the problem 
Consider hydromagnetic flow of an electrically conducting, incompressible, viscous 

fluid past a non-conducting rotating sphere of radius a. Let U, be the velocity of the 
free stream at infinity and w1 be the angular velocity of the sphere about a di- 
ameter parallel to U,. Taking the centre of the sphere as the origin, let us introduce a 
spherical polar co-ordinate system (5, 6, $) in which 6 is measured from the forward 
stagnation point. The velocity and the magnetic field components describing the flow 
are (q,., qg, q+) and (@., go, a+), where all these physical variables are functions of F 
and 6 only. The equations governing the flow are obtained in non-dimensional form 

where 
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in which f&o is the strength of the magnetic field on the surface of the sphere. In  the 
above equations R(= aL&/v) is the Reynolds number, (= a2uW,/u) is the rotation 
parameter, BM (= al.&/q) is the magnetic Reynolds number and AP(=,ueHia2/pvy) 
is the square of the Hartmann number. Equation (2.1) is obtained by eliminating the 
pressure between the first and second components of the momentum equation. The 
induction equation governing Ho is not included as this equation depends upon (2.3) 
and (2.6). Once H, is known, H, can be calculated from (2.6). 

The boundary conditions at infinity are 

u, = -cosO, u, = sine, u$ = 0 ,  H, = H ,  = H, = 0. (2.7) 

u, = u, = 0, U$ = 1 (2.8) 
On the sphere, we have 

and the magnetic field H = (H,, He, H , )  is continuous with the field inside the sphere. 
The continuity of the magnetic field is valid if it is assumed that the magnetic per- 
meability takes the same value everywhere. 

The equations governing the magnetic field inside the sphere, in which no currents 
flow, are a a - (sin OH,) = 0, - (rH,) = 0,) ae ar 

I 

(2.10) 

Equations (2.1)-(2.6) and the boundary conditions (2.7)-(2.10) indicate that the 
problem depends upon four independent parameters, namely R,  RM, M 2  and TP2,IR. 
In view of the complexity of the analysis, we consider the solution in the case in which 
R, RM+ 0 while T; /R  and M 2  are O( 1 ) .  Since RM is assumed to be small, we take the 
solutions to be of the form 

a a 
ae ar 

- (r2 sin OH,) + - ( r  sin OH,) = 0. and 

(2.11) I (ur, ue, u,) = (u,", ~ $ 9  u$)+ R,(u:, 4, ~i) + . . ., 
(&,He, H$) = (H,", H$) + RM(H:, Hi, H i )  + . . . . 

Now let us find the distribution of the magnetic field inside the sphere. On sub- 
stituting (2.11) into (2.9) and (2.10), we get the following zeroth- and first-order 

I approximations : a a 
- (sin8H:) = 0,  - (rH8) = 0,  a8 ar 

and 
a a 
ae ar 
- (sinOH3) = 0, - (rH$) = 0, 

a aH: - (rHi) -- = 0, 
ar ae 

a a 
ar ae - (r2sin8H:)+-(rsinOHi) = 0. 

1 (2.12) 

(2.13) 

(2.14) 

(2.15) 
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As there is a magnetic pole at the centre of the sphere, equations (2.12) yield a solution 
of the form 

(H:, HZ, H$) = (+, 0 , O ) .  

Now from (2.13) we get H i  = C/rsine, (2.16) 

where C is an arbitrary constant. On introducing a potential function CD such that 

H; = -a@/&, Hi = - r--1 a@/ae, 

(2.15) can be rewritten as 

On solving for CD, we have 

n=O 
(2.17) 

In view of the singularity at  r = 0, from (2.16) and (2.17) we h d  that the magnetic 

field components are m \ 

I H: = 2 nanrn-lPn(cos e), 
n=l 

m 

n=O 
H ;  = - c. anrP;(cose)~ine 

(2.18) 

and Hi = 0. 

Now, on introducing (2.11) into equations (2.1)-(2.6) and boundary conditions (2.7) 
and (2.8), we get systems of equations and boundary conditions corresponding to 
different approximations. 

In  the zeroth approximation, the equations governing the magnetic induction are 

V~H$ - H$/ra sin2 e = 0, 

a a - (rzsin OR) + - ( r  sin OH%) = 0. 
ar ae 

The corresponding boundary conditions are 

H:=l, H $ = H $ = O  at r = l  

and H$' = H: = P6 = 0 at r = 00. 

On solving the above boundary-value problem, we get 

(H:, HO,, H$) = (r2, 0 , O ) .  

This solution indicates that the magnetic field inside the flow is the same as that within 
the sphere. This is due to the fact that in the zeroth approximation there is no inter- 
action between the flow and the magnetic field. We also note that the zeroth approxi- 
mations of the momentum equations are identically satisfied. 
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For the first approximation, the equations of motion can be written as 
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ui2 T2u02 R ( d .  V ) U; - R - - -1 +) - 
r R  

M 2 a  
r sin26 r3 ar 

0 0  0 0  

R ((uo. V ) u $  +? +- cot 0 = V%$ --$- +- - (rHd), (2.20) 
r 

2H1 2coteH1 2 ape 
(sin Bug) = V2H: - -' - - r2 e---, $sine% r2 r2 a0 

i a  
(2.21) 

(2.22) 

(2.23) a a 
ar ae - (+sin Su:) + - (r sin 6%;) = 0 

(2.24) -(r2sin8Hf)+-(rsinBHQ) a a = 0. 
ar ae and 

The corresponding boundary conditions at r = co are 

u: = -cos0, U$ = sin$, uj = 0, HF = H i  = H1 - 0 $ - -  
while at r = 1 

U: = U$ = 0, U$ = 1, H i  = 0 

and H1, and H i  are continuous with the first approximation of the magnetic field 
inside the sphere. 

As the motion under consideration is two-dimensional, we introduce stream 
functions k0 and for the velocity and magnetic field respectively. Thus we have 

Now, following the analysis of Ranger (1971), the solutions for the present problem 
are taken as 

$o = r2sin28[&f+(T2, /R)Fcos8] ,  (2.25) 

$l = r2 sin2 O[gg + (TT/R) G cos 01, (2.26) 

n = X + + R X ~ ~ ~  e (2.27) 

x=y++RYcos6, (2.28) and 
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where !2 = ru$/sin8, x = rH$/sinO, andf,  F ,  g, G ,  2, X ,  y and Y are functions of T 

only. The expressions for $o and $, are the zeroth approximations of the perturbation 
solution with R as parameter, while the expressions for Q and x consist of both zeroth- 
and first-order terms in R. 

With the above choice for $o and $,, the velocity and magnetic field components 
u,, ug, H, and H, are given by 

u, = fcose+ (T; /R)  ~ ( 3  cos2e- I), (2.29) 

uO = sinO[u+(T;/R) VCOS~],  (2.30) 

H, = g c o s e + ( T ~ / ~ ) ~ ( 3 c o s 2 e - i )  (2.31) 

and H, = - sin O{g + irg’ + (T;/R) cos e(2G + rG’)}, (2.32) 

where u = -(f+&f’) and V = -(2F+rF’).  On introducing (2.27)-(2.31) into (2.19)- 
(2.22) and then equating the corresponding terms on both sides, we get the following 
sets of simultaneous equations. 

First system: 

g’+-g’+-+- f’ 2f - - 0, 4 
r r2 r3 

0, 

d2 2 d  y 2y I d  x 
(P+KG) (F) - F + S  (2) = O -  

(2.33) 

(2.34) 

(2.35) 

(2.36) 

Xecond system: 

= 0, 
4 4G (2F+rF’) 
r r2 r3 

G” +-c‘- - + 

r r2’  

(2.38) 

(2.39) 

(2.40) 

Before we specify the boundary conditions corresponding to the above two systems, 
let us determine the boundary conditions on the magnetic field at r = 1. Demanding 
that the magnetic field components inside the sphere and in the flow are continuous 
at r = 1, we get 

g(1) =a,, a, = 0 for n > 1, 
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Thus the boundary conditions appropriate for the problem are 

for the first system 
f = f ’ = g ‘ = y = O ,  x = l  at r = l  

f-+-l, f,‘g’+O, z/r,y/r+O as r+co 

for the second system. 
and F = F ’ = G =  Y = X = O  at r = l  

F,F’,G+O, Y / r , X / r + O  as r+co 

Now, in view of (2.34) and (2.38), (2.33) and (2.37) can be rewritten as 

and 

Equations (2.35), (2.36) and (2.43) together with the boundary conditions 

I f = f ’ = O ,  x = i ,  y = O  at r = l ,  

f+-1, f’-+O, x/r,y/r+O as r+oo 

constitute the first system. 
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(2.41) 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

The second system comprises (2.39), (2.40) and (2.44) with the boundary conditions 

F = F ‘ = X = Y = O  at r = l ,  

F,F‘-+O, X l r ,  Y/r-+O as r+m. 
(2.46) 

On solving the above boundary-value problems, we get the velocity and the 4 
component of the induced magnetic field. Then the components of the induced 
magnetic field in the r and 8 directions can be determined from (2.34) and (2.38). In  
the absence of rotation (TI = 0), the problem given by the first system reduces to 
that investigated by Riley. On the other hand, when the magnetic field is absent, 
both systems reduce to those of Ranger. 

I n  what follows, we obtain the numerical solution of the boundary-value problems 
by using the Runge-Kutta-Merson method (see Lance 1960, p. 56), which has an 
additional formula for the determination of the truncation error. This facilitates a 
suitable choice of step length. 

3. Solution of the problem 

be written as the set of first-order equations 
Let us introduce the transformation 2 = ( r -  I)/&, where S = 3M. Now (2.43) can 

DY, = Y29 DY2 = Y39 DY3 = Y4, 

where y1 = f. Combination of these equations with the two sets of initial conditions 

at Z = O  
y 1 = y 2 = o ,  y 3 = 1 ,  y 4 = 0  

y1 = y2 = Y3 = 0, Y4 = 1 

leads to a solution of the form f = A ,  f ,  + A ,  f2, 
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where fi and fz are the two particular solutions corresponding to  the two sets of 
initial conaitions. Use of the boundary conditionsf = - 1 andf' = 0 gives A ,  and A,. 

Now we convert (2.35) and (2.36) into the first-order equations 

DY1= Y2, 

DY3 = Y49 

where y1 = x / r -  1 and y3 = y / r .  These equations together with the three sets of 
initial conditions 

at z=o  I y1= 0, Yz = 1, Y3 = y4 = 0 

Y l  = Y2 = Y3 = 0, Y4 = 1 

Y1 = Y2 = Y3 = Y4 = 0 

x / r  - 1 = A, yI1) + A ,  yi2) + yI3), yield the solution 

in which the superscripts (1)-(3) correspond to the three particular solutions. Applying 
the boundary conditions x / r ,  y/r -+ 0 as 2 3 00 determines the constants A ,  and A,. 

Following the above procedure, we next solve the second system for F ,  X and Y ,  
thus obtaining the velocity and magnetic field components. 

4. Discussion of the results 
To gain deeper insight into the flow, we have computed the numerical solution for 

various values of M2 and T;/R.  The functions f, .Is', v and V related to the velocity 
components u, and ug [see (2.29) and (2.30)] are presented in figures 1 and 3. Streamline 
patterns exhibiting the effects of the magnetic field (M2) and the rotation (T:/R) are 
given in figures 2 and 4-6. 

In  the absence of rotation, (2.29) and (2.30) reduce to the form 

u, =fC080, u, = vsine. 

As f < Oandv > 0, u, > Ofor 0 ,< 0 < n whileu,s Ofor 0 G 8 < ?p and an < 6 G T  
respectively. 

From figure 1 we see that f and v decrease as the magnetic field increases. Hence 
we find that the flow along and across the magnetic field lines is restricted as the 
magnetic field is enhanced. The flow across the magnetic field lines is reduced because 
the Lorentz force, which acts in the -0  direction, opposes the motion. The inward 
and outward radial flow which takes place in the first and second quadrants, re- 
spectively, is curtailed as the pressure gradient, which changes sign from positive to 
negative, is increased by the magnetic field permeating the medium. This reduction 
in the radial flow can also be attributed to the fact that the magnetic field lines 
(originally in the radial direction) are displaced in the downstream direction. 
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FIQURE 1. Effect of magnetic field on (a)f  and (b)  v (T:/R = 0). 

1 1 
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FIUURE 2. Streamlines showing the effect of 8 magnetic field 
(T:/R = 0, 4(1 = -0-125). -, M2 = 25; ---, Ma = 0. 

From figure 2 we see that the streamlines in the magnetic case ( M 2  = 25) are 
pushed away from the sphere compared with those in Stokes flow ( M 2  = 0). This is 
due to the fact that f (which occurs in the relation I# = 4 fr2 sin2 0 )  is reduced by the 
presence of the magnetic field. 

are given by Now let us consider the case when the sphere is rotating. Here u, and 

U, = ~ ~ o s O + ( T ~ , / R ) F ( ~ C O S ~ O -  i),  (4.1) 
Ue = sin 0[v + (T2,/R) V cos 01 (4.2) 

and + = +sinv[if+ (T;/R) F case]. (4.3) 
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FIGURE 3. Effect of magnetic field on (a) F and (b)  V (T:/R * 0). 

3 2 I 0 1 2 3 
r 

FIGURE 4. Streamlines showing the effect of rotation ( M  = 0, 11. = -0.125). 
-, T:/R = 5; ---, TI/R = 10; ---, TI/R = 15. 

In  the absence of the magnetic field (see figures 1 and 3), it  is clear that F and V 
are very much smaller than f and v. In view of (4.1), we see that as T : / R  increases the 
inward radial flow (in the first quadrant) increases or decreases according as 

i.e. 8 5 54" 42'. On the other hand, the outward radial flow (in the second quadrant) 
increases or decreases according as 8 >< 144" 42'. Further, from (4.2) we find that as 
the rotation increases the azimuthal flow increases for 0 < 8 < Qn while it decreases 
for &r < 8 < n. The above behaviour of the velocity components can be understood 
by considering the effect of the centrifugal force produced by the rotation. As the 
sphere rotates with higher angular velocity, the fluid in the zone 54" 42' < 8 ,< 144" 42' 
is driven out by the centrifugal force. In  order to compensate for this motion, the 
fluid in the other zones is sucked towards the poles of the sphere. 

From figure 4 it is interesting to note that, in the front portion of the sphere, the 
streamlines are pulled towards the axis of rotation, while they are pushed away in 
the rear portion. 

case 5 1/43, 
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FIGURE 5 .  Streamlines showing the effect of rotation in the presence of a magnetic field ( M 2  = 25, 
@ = - 0 * 1 2 5 ) . - , T ; / R = 5 ; - - - ,  TI/ R -  - lo;-*- , T : / R  = 15. 
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FIGURE 6. Streamlines and back-flow region (T: /R  = 10, @ = -0 .125) .  
-, MZ = 0 ;  ---, MZ = 25. 

In the light of the above findings, let us examine the simultaneous effects of rotation 
and a magnetic field. From figure 3 we see that the profiles of F and V are very much 
flattened as the strength of the magnetic field increases. Thus, in view of (4.1) and 
( 4 . 2 ) ,  the effects of rotation are significantly counteracted by the presence of the 
magnetic field. As f and v are the dominant quantities in u, and uo, it is to be expected 
that the magnetic field plays a vital role in determining the characteristics of the flow. 
Nevertheless, from figure 5 it is apparent that the rotation maintains its role of 
pulling down the upstream flow and pushing up the downstream flow. However, this 
effect is less prevalent as the magnetic field decelerates the flow considerably. 

The expression (4.3) for $ suggests that back flow arises for cos 8 = - fR/2TZ, F, 
if T: /R  > f / 2 F .  From figure 6, it is worth noting that the reversed flow produced by 
rotation is enhanced by the presence of the magnetic field. The mechanism underlying 
this phenomenon can be explained as follows. The rotation produces a flow from the 
poles to the equatorial plane of the sphere. This flow is restricted by the axial flow, 
but when it dominates the axial flow, back flow occurs a t  the rear portion of the 
sphere. In the presence of a magnetic field this back flow is enhanced, and is expected 
to set in a t  a lower value of T;/R,  since the magnetic field opposes the axial flow. 

Numerical solutions obtained for the particular cases (i) T i / R  = 0,  M =# 0 and (ii) 
T ; / R  + 0, M = 0 are in good agreement with those discussed by Riley and Ranger. 
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From the above analysis, we conclude that the flow past a sphere is significrtntly 
affected by rotation of the sphere and a magnetic field permeating the medium. 

We are highly grateful to the referee for his valuable comments, which led to 
improvement in the presentation of the paper. One of the authors (K. V. R. R.) thanks 
the C.S.I.R. for providing a fellowship. 
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